
where Bi m = ~mR/l m is the Blot number; ~m is the heat transfer coefficient between the last 
(m-th) layer of the heat exchanger and the medium that washes over it; Tex t is the temper- 
ature of the medium external to the heat exchanger. 

Coordinate functions for the successive approximations are obtained from Eq. (26). 

In this case, solutions of the form (15) and (20) are to be taken in the following forms: 

~ ( p ,  s, p) = T xt--bl(s, P)~I~(P) (i = l, m), (28) 

T~t(p, z ) =  ~xt---~[~(z)~h~(p) (i = 1, m). (29) 
h = l  

The expressions (28) and (29), with coordinate functions obtained from equations (26) and 
(27), satisfy the boundary conditions and all the junction conditions. The unknown coeffi- 
cients b1(s, p) and fk(z) are to be determined in such a way that the initial differential 
equations are satisfied in an optimum manner. For this purpose one can use the Bubnov-Ga- 
lerkin orthogonal method (for determining bl(s, p)) and the Kantorovich method (for deter- 
mining fk(z) (k = i, n). 

It should be pointed out in conclusion that the approach outlined here makes it possible 
to solve effectively heat exchange junction problems for boundary conditions varying in 
time and with respect to z, as well as for fluid temperatures at the channel entrances vary- 
ing with respect to p and with respect to the time, and for initial heat-carrier temperatures 
dependent on the coordinates p and z. 

NOTATION 

T, temperature; Til, TI2 , TI, initial temperatures; Tw, outer wall temperature; Text, 
temperature of external medium; Way , average velocity; x, r, longitudinal and transverse 
coordinates; ~, time; rl, r 2 = R, distances to inner and outer walls; p = r/R, dimensionless 
coordinate; a, smaller of the diffusivity coefficients a I and a2; Pe = 6RWav/a, Peclet num- 
ber; z = (i/Pe)x/R, dimensionless coordinate; Fo = aT/R 2, Fourier number; I, coefficient 
of thermal conductivity; m, number of heat exchanger layers; H(N), Heaviside function; ~, 
argument of Heaviside function; ~, heat transfer coefficient; Bi = aR/l, Blot number. 

LITERATURE CITED 

I. A. V. Lykov and T. L. Perel'man, Heat and Mass Exchange with a Surrounding Gaseous Medium 
[in Russian], Minsk (1965), pp. 3-24. 

2. P. V. Tsoi, Computational Methods in Heat and Mass Transfer Problems [in Russian], Mos- 
cow (1971). 

3. P. V. Tsoi, Computational Methods in Heat and Mass Transfer Problems [in Russian], 2nd 
ed., Moscow (1984). 

4. V. A. Ditkin and A. P. Prudnikov, Operational Calculus in Two Variables and Its Applica- 
tions [in Russian], Moscow (1958). 

5. V. A. Ditkin and A. P. Prudnikov, Operational Calculus [in Russian], Moscow (1975). 

THE DYNAMICS OF THE FREEZING OVER OF UNDERGROUND PIPES 

B. A. Krasovitskii UDC 551o322:536.24:621.643 

The article suggests a method of calculating the unsteady process of freezing 
over of an underground pipe transporting a freezing liquid. 

Pipeline transport of water, aqueous solutions and suspensions under conditions of low 
ambient temperatures may be accompanied by their freezing. The formation of an ice layer 
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on the inner pipe surface causes increased hydraulic resistance. In view of that the predic- 
tion of freezing over of pipes under extreme climatic and technological conditions has to be 
included in the pipeline project. 

A considerable number of authors dealt with the heat exchange between a liquid and a 
wall whose temperature is lower than the freezing point of the liquid. Articles [I, 2] dealt 
with the nonsteady heat exchange between a liquid and a cold flat wall taking the growing 
ice layer into account. The wall temperature was assumed to be constant. In [3-5] an ana- 
logous problem was solved for flow in a pipe, in [6] a similar problem was considered for 
the case of a constant heat flux into the soil. The effect of the evolution of the temper- 
ature field in the environment for the plane and the axisymmetric problem was taken into 
account in [7, 8]. In [9] the method of [8] was developed with the phase transitions in the 
surrounding soil taken into account. The present article constitutes a further development 
of the method of [9] in connection with laminar and turbulent flow in pipes, and it substan- 
tiates some assumptions that had been used in [9]. 

We deal with the heat exchange of a liquid flowing through an underground pipe with the 
surrounding soil. At the instant of starting the soil is frozen and has a temperature Tf < 
Tp. The temperature of the liquid at the inlet is T o > Tp. In the region 0 < z < b the pipe 
is not frozen over and the equation of the influx of heat is written in the f~rm [9] 

C{ ao ao O~<z<b ;  at +c~ =qi +C~" (1 )  
- ~ z  ' i = 1 , 2 ;  

H e r e ,  

ci=  

~ _  , 

pc• 

2~j 

Olz=o = 1. ( 2 )  

r - -~rp  ," ~J= T j - - r  v , t =  r '~'" 
ro - T 7 o - -  rp R~ ' p 

( 
' 2 a k j '  2a~,~ (To - -  Tp ) ' 

ql= 1 2~ aoj I r 
e= dT l ,=d~ ;  r =  R---7; 

i = 

0,31G ~ 

4a2ga 5 (lg Re - -  1) = 

166 ~ 
, Re < Reer. 

az2ga 5 Re 

, Re > Rec.; 

In the region b < z < L on the inner pipe wall, an ice layer forms, and the radius of its 
inner surface is 6(z, ~). The equation of heat influx for the liquid in this zone is 

c~x ~ + c~ az a--!~ = - ~o + c~ ; (3) 

Ol,=b = o..  ( 4 )  
H e r e  R = 6 & / k j ;  x = ( 8 / R i ) = .  

The heat transfer coefficient from the liquid to the inner pipe surface ~ is determined 
by the following relations: 

k~ 
0,023 "':r Re ~ Pr  ~ Re > R e  r ; 

2a 

, Re < Reef, 

3,78 ---~s R e < R e e f  G w ~ 1 0 ;  
2a 

Gw > 10; 
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Fig. i. Dependences of the thickness of the ice layer A = R i - 6 (mm) (a, c) and of the 
temperature of the liquid T (~ (b) on the longitudinal coordinate z (km) for different 
instants: a, b) variant I: i) �9 = 6,51 h; 2) 11.61; 3) 25.18; 4) 50.3; 5) 92.08; 6) 156.9; 
7) 252.4; 8) 383 h; c) variant II: i) �9 = 8.21 h; 2) 13.39; 3) 19.6; 4) 26.00; 5) 35.95; 
6) 46.5; 7) 59.3; 8) 74 h. 

G w = @cG/ ~s a is the radius of the inner cross section of the pipe. The statement of the 
problem of heat conduction for the surrounding soil corresponds to [9] and is not presented 
here. 

The growth of the ice layer on the inner pipe surface is determined by Stefan's condi- 
tion: 

aTic l  l~o a~ a---t = a (T- -  rp )+  ~--bT-, I;:~; (S) 

~1~=,o(,~= R~. (6) 
Here ,  t 0 ( z )  i s  t h e  t ime  o f  a r r i v a l  o f  t h e  f r o n t  o f  f i l l i n g  t h e  p i p e  in  t h e  s e c t i o n  z.  

Le t  us  f i r s t  r e g a r d  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  o f  h e a t  i n f l u x  f o r  t h e  l i q u i d  ( 1 ) ,  ( 2 ) .  
The r e g i o n  0 < z < b can be d i v i d e d  i n t o  two z o n e s .  In  t h e  f i r s t  zone 0 < z < b f m e l t e d  
s o i l  l i e s  n e x t  t o  t h e  p i p e .  The d i m e n s i o n l e s s  t e m p e r a t u r e  o f  t h e  l i q u i d  a t  t he  bounda ry  o f  
t h i s  zone  i s  d e t e r m i n e d  a f t e r  [9] by t h e  r e l a t i o n  

b' (7)  } (b') = exp [--  F (b')] ,f exp (F (z)) de . 
Here, o 

l 2 

F(z) = c~ V - b 7  

. . . .  

D ~ = 4 a 2 a o - - a ~ ;  a o = I n s o + - -  

ub' \ . ,, 
a2 = - - ( l n s o  + - T ) / O  ; 

arctg 2a2z + a~ a 1 
V" D," a r c t g - - ~ _ ) ,  D~ > O; 

(2a2z + a ~ - - V - - D , ) ( a l  + 1/~--D~) 
In (2a~z + a 1 + ] / ~ e ) ( a l  - -  K - - D ~ )  

I 
; a~ = u/so; 

~ I ~ - ~ - - -  ; 
OZ z=o 

I ]n Ro ~] - '  
Z~ --hTJJ " 

- -  }, De<0; 

The system of differential equations for determining so, u, b' was given in [9]. 

The dimensionless temperature of the liquid on the frontal boundary of the ice layer 
z = b is determined by the following expression: 

b'--b _~ ,  
Od~---O(b ) = Of + C~Q(t') + [O(b ' ) - -Of - -C~aQ( t ' ) l exp  C~Q(t') ) 

where 

%• X2 ~ In Ro 1 t '  = t - - t o ;  t o :  R~ ; Q(t ')  = ~ + - -  - - + - -  

(8) 
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Here and henceforth ~ is averaged over the interval of integration. If in the interval of 
integration a change of the hydraulic conditions occurs, then integration is carried out 
separately for zones with unchangingconditions. 

The function qw characterizing nonsteady heat exchange with the surrounding single- 
phase soil is determined in accordance with [9]. It is obvious that if the temperature of 
the phase transition of the capillary liquid of the soil and the temperature of the liquid 
transported through the pipe coincide and the heat insulation of the pipe is thin, b' = b 
and the temperature on the frontal boundary of the ice layer is determined by expression (7). 

Let us now turn to the solution of Eq. (5). Going over to dimensionless variables and 
using an approximate solution for the temperature gradient on the inner boundary of the ice 
layer, we obtain 

& & &O f (9) 
.A , -o -~ - :  : O ] / T  + l 

~o C - -  C~ In x + - -  
q,o(t') 

Here, 

/Pie x=Ri s . 

AI - 2J.RgtT0--T_); & = R,g0 ' 

C" - - ~ l n  Ro Cl ~= ~ = - ' ;  = - - ;  (Zo = &(Ri); xlt ,=o = 1. 
kin Re 2%ic . 

Let us consider the solution of (9) for small t' which corresponds to the profile of the 
ice layer near the front of filling. With a view to the expression for the radius of ther- 
mal influence in this case [ii] we have: R(t') = 1 + /6t'. We write the function qw in the 

following manner: qw = V-3t-" In addition we bear in mind that with t' + 0 x ~ i, & + a0, 

the ice layer grows much more slowly than the thickness of the heated soil layer. In view 
of that Eq. (9) assumes the form 

Ox = 0 + A20f ( 1 0 )  

A'~ c + F/- 2 
When t' is small, the expression for the dimensionless temperature in the zone that is free 
of freezing over is: 

O=Of+C~q~+(1--O~--C2qc) exp , ~  - . .  ( 1 1 )  Caq~ 

/ / 3  t' H e r e ,  qr ~ + C + A s .  

Let us consider the evolution of the dimensionless temperature in the section z during 
the period when an ice layer exists in this section. At the instant that the ice layer ap- 
pears, which corresponds to the instant of arrival of the front of filling in this section, 
its dimensionless temperature is 

Here, 

SO 0 

o = c~r [ - - c ~ +  of + c~(c + &) + (1 _ o f - - c ~  • 
o n  3 

• (C + A2)) exp C~ ( C +  As) C~ e " 
( 1 2 )  

�9 "C c i r  pcG ~ = pg6i  
2aR~0 2aR~go (To--T~) 

i s  t h e  c o o r d i n a t e  o f  t h e  f r o n t  o f  f i l l i n g  i n  w h i c h  t h e  f o r m a t i o n  o f  t h e  i c e  l a y e r  b e g i n s .  
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Fig. 2. Dependences of the coordinate 
of the front edge of the ice b (~) 
and of the minimal radius of the inner 
surface of the ice layer 6mi n (m) on 
time: i) b(~); 2) 6min(~); I) complete 
method; II) simplified method. 

The condition of the onset of growth of the layer is obtained from (9): 

AiOf O+ = 0 .  (13) 
C 

When we u s e  ( 1 1 ) ,  i t  f o l l o w s  from t h e  a b o v e - s a i d  t h a t  

of ~c~  (c + A~) - -  1 j 
s~ =C~(C + Ai)ln g f ~ - ~ - A ~ ) + A i O f / C  f " (14)  

When we substitute this expression into (12), we obtain 

0, 
Oon=C}c---(Og+ AiOf/C)exp C,~------- . (15) 

At the instant that the ice layer disappears in the section z, the temperature of the flow 
in it is 

Oin-- Of + Caqcin-~ (1 -- Of -- C~qci~exp C~qc in " 

3 
Uere, %~ ],/-j q#- c + A; q ~  tin-to. 

Assuming that the temperature of the flow in the section z changes linearly with time, 
we represent Eq. (i0) in the form 

A Ox t' AiO . ,>-?- = e + (oi;-o~--+o~i. f (17) 
on C + , /  3 

l' 
V T 

When we integrate this equation, we obtain the following expression: 

- +  - C t n  1 + . ( 1 8 )  
x =  1 + A~VR~ in on 2~in o • 2 VR~ --C 2 VR 2 

Here g = VR~/K 2 t' is the distance between the given section and the front of filling; gin = 
VR~ t'in/< 2 is the same for the instant that the layer disappears. Obviously, when ~ = Sin, 
x = i. When we substitute these values into (18), we obtain a transcendental equation for 
determining Sin: 

(J g) 
3 • , 2 VR~ 2 VR~ / 

Expression (18) describes the profile of the ice layer at the initial period of ice forma- 
tion, and also near the front of filling. 

When the value of t'in obtained by Eq. (19) is larger than t a (the limit of applicabil- 
ity of the solution of (18)), we have to put 
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�9 0 "~ �9 "C 2 l i ~  q" i n c a  ~- [---d~ -~ Of @ Caqca @ (I --Of 

ox ( 
= --~--I a -F Cq-A2. 

- C~a) x 

The system of equations (I)-(4), (9), (i0) fully describes the temperature and ice con- 
ditions of the pipe. For its integration a program in FORTRAN-V was worked out. The solu- 
tions for small t' were obtained with the aid of relations (ii), (15)-(18). This elimi- 
nates the computing difficulties arising at the initial instant of ice formation. First, 
with the aid of (14), the coordinate of the place of origin of the ice layer is determined. 
Then, for the initial time interval [0, t a] we seek the profiles of the ice layer from rela- 
tions (18), (19). By numerical integration of the problem (3), (4) we determine for the 
instants t > t a the temperature field of the liquid above the ice layer at the given instant, 
and with the aid of (9) we determine the increase of the ice layer; then the procedure is 
repeated. 

Figure i shows the results of the calculations by the mentioned program. The calculations 
were carried out for the following initial data: Q = 400 m3/h; R 0 = 0.266 m; R e = 0.2635 m; 
R i = 0.2535 m; L = 50 km; c = 4.18 kJ/(kg'~ %s = 0.559 W/(m'~ %ic = 2.32 W/(m'~ %in = 
2.09 W/(m-~ K 2 = 0.585"10 -2 m2/h; ~ = 300 kg/m~; Tf = 4~ T o = +I0~ Tp = 0~ s = 335 
kJ/kg; %in = 209 W/(m'~ t a = 0.025. 

Kinematic viscosity v and density p of the liquid were adopted for variant I equal to the 
corresponding characteristics of water (v = 0.647-10 -2 m2/h; p = i000 kg/m3). For variant II 
we calculated the case of a suspension based on water (v = 1.5 m2/h; p = 1400 kg/m3). Variant 
I is characterized by turbulent flow (Re z 1.5"104), II is characterized by laminar flow (Re 
700). It can be seen from the presented graphs that a characteristic feature of variant I is 
the abrupt increase Of the thickness of the ice layer in the region of its front edge; further 
downstream along the pipe its thickness changes only slightly (Fig. la). An inherent trait 
of the temperature of the liquid is the abrupt drop in the region of the front edge of the 
ice (Fig. Ib). These effects are due to the fact that the heat transfer coefficient from the 
liquid to the inner pipe wall is larger when the flow is turbulent. Variant II (laminar flow) 
is characterized by a small longitudinal temperature gradient of the liquid in the region of 
the front edge of the ice and by correspondingly even growth of its thickness (Fig. Ic). 

The above-mentioned features of freezing over in turbulent flow make it possible to sim," 
plify the method of calculating it. Since in the region of freezing over, except in a narrow 
zone near the front edge, the temperature of the liquid remains practically unchanged, it can 
be determined from Eq. (3) 

0 = C~/a; b ~ z ~ L .  (20) 

In view of this, the equation of the growth of the ice layer (9) assumes the form 

J - A~O A1 0x Ca V~ + f (21) 
Ot ---v-'- = ~ - ~  C - -  C1 In x + 1/qw (t') " 

Here, ~0 = ~06/%j �9 

Obviously, integrating the given equation is a simpler problem than integrating the 
system (3), (9). The regularity of motion of the front edge of the ice layer can be found on 
the basis of the following considerations. Melting of the front edge occurs on account of 
the lowering of the temperature of the flow from @dt~ Be, i.e., the temperature at which the heat 
fluxes on the inner surface of the ice layer are in equilibrium: 

0e = ~o A~0f (22) 
V x ( C - - C l l n x  + 1/qw) 

Hence, when we construct the relation of thermal balance, we obtain 

db = [ R o ~  2 G (23) 

k R, ] a• 1 + cp(To--Tp)(~ ~--O,) 
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Figure 2 shows a comparison of the results of determining the coordinate of the front 
edge of the ice layer and of its maximal thickness obtained with the aid of the simplified 
method (21)-(23) and the more complete method described above. It can be seen from the pre- 
sented graphs that the simplified method yields practically the same results as the more 
complete one. Yet for its realization much less computer time and memory capacity are re- 
quired. 

NOTATION 

T, temperature of the liquid; Tp, temperature of the phase transition of the liquid; 
p, density of the liquid; ks thermal conductivity of the liquid; c, specific heat capacity 
of the liquid; To, temperature of the liquid at the inlet to the pipe; G, volumetric flow 
rate; i, hydraulic gradient; E, mechanical equivalent of heat; R i, inner pipe radius; Re, 
outer pipe radius; R0, outer radius of the heat insulation; z, longitudinal coordinate; 

radial coordinate; Tj, temperature of the j-th zone of soil; kl, thermal conductivity of 
the j-th zone of soil; Kj, thermal diffusivity of the j-th zone oz soil (j = I: melted zone, 
j = 2: frozen zone); Re, Reynolds number; Recr, Reynolds number at which laminar flow chan- 
ges into turbulent flow; &, heat transfer coefficient from the liquid to the inner pipe wall; 
b, longitudinal coordinate of the front edge of the ice layer; 6, radius of the inner surface 
of the ice layer; s specific heat of the phase transition ice-water; Pic, weight of the ice 
in unit volume of frozen liquid; Tic , temperature of the frozen liquid; kic, thermal conduc- 
tivity of the frozen liquid; kin, thermal conductivity of the insulation; R, dimensionless 
radius of thermal influence; g, acceleration of gravity; s, dimensionless radius of melting of 
the soil around the pipe; So, the same for the initial section of the pipeline; Tf, natural 
soil temperature; ~, time; Pr, Prandtl number. 
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